Step-by-Step Solution
Step 1
We are given the value of force $F = {\rm{500 N}}$.
We are asked to estimate the magnitudes of the two components of F.

Step 2
The following is the free body diagram to calculate the magnitude of force related to link AB.

To find the magnitude of force we will use the law of sines.\[\frac{{{F_{AB}}}}{{\sin 60^\circ }} = \frac{F}{{\sin 75^\circ }}\]
Plugging the known values in the above equation.\[\begin{array}{c} \frac{{{F_{AB}}}}{{\sin 60^\circ }} = \frac{{500\;{\rm{N}}}}{{\sin 75^\circ }}\\ {F_{AB}} = 448.28\;{\rm{N}} \end{array}\]
Step 3
The following is the free body diagram to calculate the magnitude of force related to link AB.

To find the magnitude of force we will use the law of sines.\[\frac{{{F_{AC}}}}{{\sin 45^\circ }} = \frac{F}{{\sin 75^\circ }}\]
Plugging the known values in the above equation.\[\begin{array}{c} \frac{{{F_{AC}}}}{{\sin 45^\circ }} = \frac{{500\;{\rm{N}}}}{{\sin 75^\circ }}\\ {F_{AC}} = 366.02\;{\rm{N}} \end{array}\]
