Step-by-Step Solution
Step 1
We are given the units ${\rm{8653}}\;{\rm{ms}}$, $8368\;{\rm{N}}$ and $0.893\;{\rm{kg}}$.
We are asked to represent the SI units.
Step 2
(a)
To find the SI unit we need to reduce the combinations of units.
Since ${\rm{1 ms}} = {\rm{1}}{{\rm{0}}^{ – 3}}\,{\rm{s}}$, then\[\begin{array}{c} {\rm{8653}}\;{\rm{ms}} = \left( {{\rm{8}}{\rm{.653}} \times {\rm{1}}{{\rm{0}}^3}\;{\rm{ms}}} \right)\left( {\frac{{{\rm{1}}{{\rm{0}}^{ – 3}}\,{\rm{s}}}}{{{\rm{1}}\;{\rm{ms}}}}} \right)\\ = 8.653\;{\rm{s}} \end{array}\]
Step 3
(b)
To find the SI unit we need to reduce the combinations of units.
Since ${\rm{1 kN}} = {\rm{1}}{{\rm{0}}^3}\,{\rm{N}}$, then\[\begin{array}{c} 8368\;{\rm{N}} = \left( {{\rm{8}}{\rm{.368}} \times {\rm{1}}{{\rm{0}}^3}\;{\rm{N}}} \right)\left( {\frac{{1\,{\rm{kN}}}}{{{\rm{1}}{{\rm{0}}^3}\;{\rm{N}}}}} \right)\\ = 8.368\;{\rm{kN}} \end{array}\] Step 4
(c)
To find the SI unit we need to reduce the combinations of units.
Since ${\rm{1 kg}} = {\rm{1}}{{\rm{0}}^3}\,{\rm{g}}$, then\[\begin{array}{c} 0.893\;{\rm{kg}} = \left( {{\rm{893}} \times {\rm{1}}{{\rm{0}}^{ – 3}}\;{\rm{kg}}} \right)\left( {\frac{{{{10}^3}\,{\rm{g}}}}{{1\;{\rm{kg}}}}} \right)\\ = 893\;{\rm{g}} \end{array}\]
