Represent each of the following as a number between0.1 and 1000 using an appropriate prefix: (a) 45320 kN,(b) 568(105) mm, and (c) 0.00563 mg.

Step-by-Step Solution

Step 1

We are given the values $45320\;{\rm{kN}}$, $568\left( {{{10}^5}} \right)\;{\rm{mm}}$ and $0.00563\;{\rm{mg}}$.

We are asked to represent the number between 0.1 and 1000 using an appropriate prefix.

Step 2

(a)

To represent the number between 0.1 and 1000 we will use the following relation.

Since $1000\;{\rm{kN}} = 1\,{\rm{MN}}$, then\[\begin{array}{c} 45320\;{\rm{kN}} = \left( {45320\;{\rm{kN}}} \right)\left( {\frac{{1\;{\rm{MN}}}}{{1000\;{\rm{MN}}}}} \right)\\ = 45.320\;{\rm{MN}} \end{array}\]

Step 3

(b)

To represent the number between 0.1 and 1000 we will use the following relation.

Since ${10^6}\;{\rm{mm}} = 1\,{\rm{km}}$, then\[\begin{array}{c} 568\left( {{{10}^5}} \right)\;{\rm{mm}} = \left( {56800000\;{\rm{mm}}} \right)\left( {\frac{{1\;{\rm{km}}}}{{{{10}^6}\;{\rm{mm}}}}} \right)\\ = 56.8\;{\rm{km}} \end{array}\]

Step 4

(c)

To represent the number between 0.1 and 1000 we will use the following relation.

Since $1000\;{\rm{mg}} = 1\,{\rm{g}}$ and $1\;{\rm{\mu g}} = {10^{ – 6}}\;{\rm{g}}$, then\[\begin{array}{c} 0.00563\;{\rm{mg}} = \left( {0.00563\;{\rm{mg}}} \right)\left( {\frac{{1\;{\rm{g}}}}{{1000\;{\rm{mg}}}}} \right)\\ = 5.63 \times {10^{ – 6}}\;{\rm{g}} \times \left( {\frac{{{\rm{1}}\;{\rm{\mu g}}}}{{{\rm{1}}{{\rm{0}}^{ – 6}}\;{\rm{g}}}}} \right)\\ = 5.63\;{\rm{\mu g}} \end{array}\]

Leave a Comment

Your email address will not be published. Required fields are marked *