4–161. Replace the loading by an equivalent resultant force and couple moment acting at point O.

Report
Question

Please briefly explain why you feel this question should be reported.

Report
Cancel

4–161. Replace the loading by an equivalent resultant force and couple moment acting at point O.

MathJax Example

Answers ( 2 )

  1. Please briefly explain why you feel this answer should be reported.

    Report
    Cancel

  2. Please briefly explain why you feel this answer should be reported.

    Report
    Cancel

    Beam Problem Solution

    body {
    font-family: Arial, sans-serif;
    margin: 20px;
    }
    h1 {
    color: #2c3e50;
    }
    .step-container {
    margin: 10px 0;
    position: relative;
    }
    .step-number {
    background-color: red; /* red background for step number */
    color: white; /* white text for the step number */
    padding: 5px 10px;
    border-radius: 5px 5px 0 0; /* round top corners */
    position: absolute; /* position it above the box */
    left: 0; /* align to the left */
    right: 0; /* align to the right */
    text-align: center; /* center the text */
    }
    .step-box {
    border: 2px solid red; /* red border */
    background-color: white; /* white background */
    padding: 15px;
    border-radius: 5px; /* slight rounding for aesthetic */
    margin-top: 30px; /* space for step number */
    }
    .equation {
    font-size: 1.2em;
    margin: 10px 0;
    }
    ul {
    padding-left: 20px;
    }
    li {
    margin-bottom: 5px;
    }

    Engineering Mechanics Problem Solution

    Step 1
    We are given the following data:

    • Length of the beam: \( l \)
    • Weight of the beam: \( W \)

    We are asked to obtain the horizontal and vertical components of reaction at point A and the tension in cable BC.

    Step 2
    The free body diagram of the beam is shown as:
    Step 3
    Applying the equilibrium of the force equation along the x-axis:

    \[
    \sum F_x = 0 \quad \Rightarrow \quad A_x – F_{BC} \cos \phi = 0 \quad \Rightarrow \quad A_x = F_{BC} \cos \phi
    \]

    Step 4
    Applying the equilibrium of the force equation along the y-axis:

    \[
    \sum F_y = 0 \quad \Rightarrow \quad A_y – W + F_{BC} \sin \phi = 0 \quad \Rightarrow \quad A_y = W – F_{BC} \sin \phi
    \]

    Step 5
    Applying the moment of force equation about point A:

    \[
    \left\{ W \left( \frac{l}{2} \cos \theta \right) + \left( F_{BC} \cos \phi \right) \left( l \sin \theta \right) – \left( F_{BC} \sin \phi \right) \left( l \cos \theta \right) \right\} = 0
    \]
    \[
    \frac{Wl}{2} \cos \theta – F_{BC} l \left( \sin \phi \cos \theta – \cos \phi \sin \theta \right) = 0
    \]
    \[
    F_{BC} = \frac{-W \cos \theta}{2 \sin(\phi – \theta)}
    \]

    Step 6
    Substitute the known value in equation (1):

    \[
    A_x = \left( \frac{W \cos \theta}{2 \sin(\phi – \theta)} \right) \cos \phi = \frac{W \cos \theta \cos \phi}{2 \sin(\phi – \theta)}
    \]

    Step 7
    Substitute the known value in equation (2):

    \[
    A_y = W – \frac{W \cos \theta}{2 \sin(\phi – \theta)} \sin \phi
    \]
    \[
    = W \left( 1 – \frac{\cos \theta \sin \phi}{2 \sin(\phi – \theta)} \right)
    \]
    \[
    = W \left( \frac{2 \sin \phi \cos \theta – 2 \cos \phi \sin \theta – \cos \theta \sin \phi}{2 \sin(\phi – \theta)} \right)
    \]
    \[
    = W \left( \frac{\sin \phi \cos \theta – 2 \cos \phi \sin \theta}{2 \sin(\phi – \theta)} \right)
    \]

  3. MathJax Example

Leave an answer

Browse

By answering, you agree to the Terms of Service and Privacy Policy.