Share
4–161. Replace the loading by an equivalent resultant force and couple moment acting at point O.
ReportQuestion
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Answers ( 2 )
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this answer should be reported.
Beam Problem Solution
body {
font-family: Arial, sans-serif;
margin: 20px;
}
h1 {
color: #2c3e50;
}
.step-container {
margin: 10px 0;
position: relative;
}
.step-number {
background-color: red; /* red background for step number */
color: white; /* white text for the step number */
padding: 5px 10px;
border-radius: 5px 5px 0 0; /* round top corners */
position: absolute; /* position it above the box */
left: 0; /* align to the left */
right: 0; /* align to the right */
text-align: center; /* center the text */
}
.step-box {
border: 2px solid red; /* red border */
background-color: white; /* white background */
padding: 15px;
border-radius: 5px; /* slight rounding for aesthetic */
margin-top: 30px; /* space for step number */
}
.equation {
font-size: 1.2em;
margin: 10px 0;
}
ul {
padding-left: 20px;
}
li {
margin-bottom: 5px;
}
Engineering Mechanics Problem Solution
We are asked to obtain the horizontal and vertical components of reaction at point A and the tension in cable BC.
\sum F_x = 0 \quad \Rightarrow \quad A_x – F_{BC} \cos \phi = 0 \quad \Rightarrow \quad A_x = F_{BC} \cos \phi
\]
\sum F_y = 0 \quad \Rightarrow \quad A_y – W + F_{BC} \sin \phi = 0 \quad \Rightarrow \quad A_y = W – F_{BC} \sin \phi
\]
\left\{ W \left( \frac{l}{2} \cos \theta \right) + \left( F_{BC} \cos \phi \right) \left( l \sin \theta \right) – \left( F_{BC} \sin \phi \right) \left( l \cos \theta \right) \right\} = 0
\]
\frac{Wl}{2} \cos \theta – F_{BC} l \left( \sin \phi \cos \theta – \cos \phi \sin \theta \right) = 0
\]
F_{BC} = \frac{-W \cos \theta}{2 \sin(\phi – \theta)}
\]
A_x = \left( \frac{W \cos \theta}{2 \sin(\phi – \theta)} \right) \cos \phi = \frac{W \cos \theta \cos \phi}{2 \sin(\phi – \theta)}
\]
A_y = W – \frac{W \cos \theta}{2 \sin(\phi – \theta)} \sin \phi
\]
= W \left( 1 – \frac{\cos \theta \sin \phi}{2 \sin(\phi – \theta)} \right)
\]
= W \left( \frac{2 \sin \phi \cos \theta – 2 \cos \phi \sin \theta – \cos \theta \sin \phi}{2 \sin(\phi – \theta)} \right)
\]
= W \left( \frac{\sin \phi \cos \theta – 2 \cos \phi \sin \theta}{2 \sin(\phi – \theta)} \right)
\]