4–109. Replace the loading by an equivalent resultant force and couple moment at point O.

Report
Question

Please briefly explain why you feel this question should be reported.

Report
Cancel

4–109. Replace the loading by an equivalent resultant force and couple moment at point O.

MathJax Example

Answers ( 2 )

  1. Please briefly explain why you feel this answer should be reported.

    Report
    Cancel

    Step 1: Find the Line Vectors \( \mathbf{OA} \) and \( \mathbf{OB} \)

    We are given the points \( O(0, 0, 0) \), \( A(0.8, 0, -1.2) \), and \( B(0, -0.5, 0) \). The position vectors from point \( O \) to points \( A \) and \( B \) are calculated as follows:

    The vector \( \mathbf{OA} \) is:

    \[
    \mathbf{OA} = \{ (0.8 – 0) \hat{i} + (0 – 0) \hat{j} + (-1.2 – 0) \hat{k} \} = \{ 0.8 \hat{i} + 0 \hat{j} – 1.2 \hat{k} \} \, \text{m}
    \]

    Similarly, the vector \( \mathbf{OB} \) is:

    \[
    \mathbf{OB} = \{ (0 – 0) \hat{i} + (-0.5 – 0) \hat{j} + (0 – 0) \hat{k} \} = \{ 0 \hat{i} – 0.5 \hat{j} + 0 \hat{k} \} \, \text{m}
    \]
    Step 2: Calculate the Resultant Force

    The forces \( \mathbf{F_1} \) and \( \mathbf{F_2} \) are given as:

    \[
    \mathbf{F_1} = \{ 8 \hat{i} – 2 \hat{k} \} \, \text{kN}
    \]

    \[
    \mathbf{F_2} = \{ -2 \hat{i} + 5 \hat{j} – 3 \hat{k} \} \, \text{kN}
    \]

    The resultant force \( \mathbf{F_R} \) is the sum of the two forces \( \mathbf{F_1} \) and \( \mathbf{F_2} \):

    \[
    \mathbf{F_R} = \mathbf{F_1} + \mathbf{F_2}
    \]

    Substituting the values of \( \mathbf{F_1} \) and \( \mathbf{F_2} \):

    \[
    \mathbf{F_R} = \{ 8 \hat{i} – 2 \hat{k} \} + \{ -2 \hat{i} + 5 \hat{j} – 3 \hat{k} \}
    \]

    \[
    \mathbf{F_R} = \{ 6 \hat{i} + 5 \hat{j} – 5 \hat{k} \} \, \text{kN}
    \]

    Step 3: Calculate the Moment Due to Force \( \mathbf{F_1} \) About Point \( O \)

    The moment due to force \( \mathbf{F_1} \) about point \( O \) is calculated as the cross product of the position vector \( \mathbf{OA} \) and the force vector \( \mathbf{F_1} \):

    \[
    \mathbf{M_1} = \mathbf{OA} \times \mathbf{F_1}
    \]

    Substituting the values:

    \[
    \mathbf{M_1} = \left| \begin{matrix}
    \hat{i} & \hat{j} & \hat{k} \\
    0.8 & 0 & -1.2 \\
    8 & 0 & -2
    \end{matrix} \right|
    \]

    \[
    \mathbf{M_1} = \{ 0 \hat{i} – 8 \hat{j} + 9.6 \hat{k} \} \, \text{kN} \cdot \text{m}
    \]

    Step 4: Calculate the Moment Due to Force \( \mathbf{F_2} \) About Point \( O \)

    The moment due to force \( \mathbf{F_2} \) about point \( O \) is calculated as the cross product of the position vector \( \mathbf{OB} \) and the force vector \( \mathbf{F_2} \):

    \[
    \mathbf{M_2} = \mathbf{OB} \times \mathbf{F_2}
    \]

    Substituting the values:

    \[
    \mathbf{M_2} = \left| \begin{matrix}
    \hat{i} & \hat{j} & \hat{k} \\
    0 & -0.5 & 0 \\
    -2 & 5 & -3
    \end{matrix} \right|
    \]

    \[
    \mathbf{M_2} = \{ 2.5 \hat{i} + 1 \hat{j} + 0 \hat{k} \} \, \text{kN} \cdot \text{m}
    \]

    Step 5: Calculate the Resultant Moment

    The resultant moment about point \( O \) is the sum of the moments \( \mathbf{M_1} \) and \( \mathbf{M_2} \):

    \[
    \mathbf{M_O} = \mathbf{M_1} + \mathbf{M_2}
    \]

    Substituting the values of \( \mathbf{M_1} \) and \( \mathbf{M_2} \):

    \[
    \mathbf{M_O} = \{ 0 \hat{i} – 8 \hat{j} + 9.6 \hat{k} \} + \{ 2.5 \hat{i} + 1 \hat{j} + 0 \hat{k} \}
    \]

    \[
    \mathbf{M_O} = \{ 2.5 \hat{i} – 7 \hat{j} + 9.6 \hat{k} \} \, \text{kN} \cdot \text{m}
    \]

    Conclusion:

    The equivalent system consists of a resultant force \( \mathbf{F_R} = \{ 6 \hat{i} + 5 \hat{j} – 5 \hat{k} \} \, \text{kN} \) and a resultant moment \( \mathbf{M_O} = \{ 2.5 \hat{i} – 7 \hat{j} + 9.6 \hat{k} \} \, \text{kN} \cdot \text{m} \).

    Best answer
  2. Please briefly explain why you feel this answer should be reported.

    Report
    Cancel

  3. MathJax Example

Leave an answer

Browse

By answering, you agree to the Terms of Service and Privacy Policy.