Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

$6–30$. Determine the force in members $CD$, $HI$, and $CH$ of  the truss, and state if the members are in tension or  compression

$6–30$. Determine the force in members $CD$, $HI$, and $CH$ of the truss, and state if the members are in tension or compression

$6–30$. Determine the force in members $CD$, $HI$, and $CH$ of the truss, and state if the members are in tension or compression

6–29. Determine the force in members HG, HE and DE of the truss, and state if the members are in tension or compression

​$ \text{Step by Step Solution​} $

$ \text{Step 1:  Given Data} $

A truss structure is subjected to five vertical loads of $1500\,{\rm{lb}} $ each at points B through F. Key dimensions:
\begin{array}{c}
{EF} = 3\,{\rm{ft}} \\
{GE} = 4\,{\rm{ft}} \\
{DE} = 3\,{\rm{ft}} \\
{HD} = 4\,{\rm{ft}}
\end{array}

$ \text{Step 2: Free Body Diagram and Objective} $

Analyze section EFG to determine forces in:
\begin{array}{c}
\text{Member CD: } F_{CD} \\
\text{Member HI: } F_{HI} \\
\text{Member CH: } F_{CH}
\end{array}

$ \text{Step 3: Geometric Analysis} $

Calculate angle $\theta$ for member CH:
\begin{array}{c}
\tan \theta = \frac{GE}{EF} = \frac{4}{3} \\
\theta = \tan^{-1}\left(\frac{4}{3}\right) \\
\hline
\theta \approx 53.1^\circ
\end{array}

$ \text{Step 4: Force in Member CD} $

Moment equilibrium about H:
\begin{array}{c}
\sum M_H = 0 \\
-F_{CD}(4\,{\rm{ft}}) – 1500\,{\rm{lb}}(3\,{\rm{ft}}) – 1500\,{\rm{lb}}(6\,{\rm{ft}}) = 0 \\
-4F_{CD} = 13500\,{\rm{lb}\cdot{\rm{ft}}} \\
\hline
F_{CD} = -3375\,{\rm{lb}}\,(\rm{C})
\end{array}

$ \text{Step 5: Force in Member CH} $

Vertical equilibrium at C:
\begin{array}{c}
\sum F_y = 0 \\
-F_{CH}\sin(53.1^\circ) – 4500\,{\rm{lb}} = 0 \\
F_{CH} = \frac{-4500\,{\rm{lb}}}{0.8} \\
\hline
F_{CH} = -5625\,{\rm{lb}}\,(\rm{C})
\end{array}

$ \text{Step 6: Force in Member HI} $

Horizontal equilibrium at H:
\begin{array}{c}
\sum F_x = 0 \\
-F_{HI} – (-3375\,{\rm{lb}}) – (-5625\,{\rm{lb}})\cos(53.1^\circ) = 0 \\
F_{HI} = 3375\,{\rm{lb}} + 3375\,{\rm{lb}} \\
\hline
F_{HI} = 6750\,{\rm{lb}}\,(\rm{T})
\end{array}

$ \text{Step 7: Verification} $

\begin{array}{c}
\text{Moment Check: } \sum M_H = 0 \quad \checkmark \\
\text{Force Balance: } \sum F_x = \sum F_y = 0 \quad \checkmark \\
\hline
\text{Final Results:} \\
\text{CD: } 3375\,{\rm{lb}}\,(\rm{C}) \\
\text{CH: } 5625\,{\rm{lb}}\,(\rm{C}) \\
\text{HI: } 6750\,{\rm{lb}}\,(\rm{T})
\end{array}

$ \text{Step 8: Conclusion} $

\begin{array}{c}
\text{The truss maintains equilibrium with:} \\
\text{• CD resisting $3375\,{\rm{lb}}$ compression} \\
\text{• CH carrying $5625\,{\rm{lb}}$ compression} \\
\text{• HI sustaining$ 6750\,{\rm{lb}}$ tension}
\end{array}

MathJax Example

About AdminBeginner

Leave a reply

By commenting, you agree to the Terms of Service and Privacy Policy.